

Maharashtra Pollution Control Board

महाराष्ट्र प्रदूषण नियंत्रण मंडळ

FORM V

(See Rule 14)

Environmental Audit Report for the financial Year ending the 31st March 2024

Unique Application Number

MPCB-ENVIRONMENT_STATEMENT-0000069450

Submitted Date

11-09-2024

PART A

Company Information

Company Name

Application UAN number

Smartchem Technologies

Limited

MPCB-CONSENT AMMENDMENT-0000012321

Address

Plot no.K-1, K-1 (Part-1), K-1 (Part-2), MIDC Taloja, Tal. Panvel, Dist. Raigad,

410208

Plot no Plot no. K-1, K-1 (Part-1),

K-1 (Part-2)

Taluka

Panvel

Scale

City

Village

Tondre

Raigad

Designation

EHS Head

Email

Capital Investment (In

lakhs)

12972873 L.S.I

Pincode **Person Name** 410208 Jeyaprakash M

Telephone Number

9047022731

Fax Number

Region

Industry Category

SRO-Taloja Red jeyaprakash.m@dfpcl.com

Industry Type

R52 Fertilizer(basic) (excluding

formulation)

2024-02-21

Last Environmental statement submitted

online

2026-03-31

Consent Number

Consent Issue Date

Format1.0/CC/UAN No.MPCByes

2016

CONSENT AMMENDMENT-0000012321/CO/2402000044

Consent Valid Upto

Establishment Year

Date of last environment

statement submitted

Jan 14 2024 12:00:00:000AM

Industry Category

Primary (STC Code) & Secondary (STC Code)

Product Information

Product Name Consent Quantity Actual Quantity UOM Ammonia 140400 74579.80 MT/A Weak Nitric Acid (WNA) from WNA-I,II,IV 346500 289393 MT/A

Technical Grade Ammonium Nitrate plus AN Melt	144000	144000	MT/A
4a. Multiple Grade NP fertilizer (AN based) * OR	325000	221710	MT/A
			•
4a. Intermediate AN * (Technical Grade Ammonium Nitrate) including AN melt	177000	0	MT/A
4b. Multiple Grade NPK fertilizer (DAP based) with an option of producing fortified grade from the same unit as per EC)	600000	386908	MT/A
Electric Power (Coal Based)	9	2.78	Mwh
Hydrogen gas	960	832.54	MT/A
CO2 Gas	72000	46083.73	MT/A
Calcium Phosphate	210	0	MT/A

Bv-	prod	uct	Info	rmat	ion
_,	p				

By Product Name	Consent Quantity	Actual Quantity	UOM
Not Applicable	0	0	MT/A

Part-B (Water & Raw Material Consumption)

1) Water Consumption in m3/day		
Water Consumption for	Consent Quantity in m3/day	Actual Quantity in m3/day
Process	639.00	370.00
Cooling	8823.00	2958.10
Domestic	77.00	75.00
All others	0.00	0.00
Total	9539.00	3403.10

2) Effluent Generation in CMD / MLD	neration in CMD / MLD			
Particulars	Consent Quantity	Actual Quantity	UOM	
Trade Effluent	1703.52	1466.6	CMD	
Domestic Effluent	70	65	CMD	
Total	1773.52	1531.6	CMD	

2) Product Wise Process Water Consumption (cubic meter of process water per unit of product)

Name of Products (Production)	During the Previous financial Year	During the current Financial year	UOM
Ammonia	0.73	0.86	Ton/Ton
Weak Nitric Acid (WNA) from WNA-I,II,IV	0.28	0.28	Ton/Ton
Technical Grade Ammonium Nitrate plus AN Melt	0	0	Ton/Ton
Multiple Grade NPK Fertiliser (Diffrant grades of AN $\&$ DAP based NPK fertilizer with an opetion of producing frortiefied grades from the same units as per EC)	0	0	Ton/Ton
Calcium Phosphate	0	0	Ton/Ton
Hydrogen gas	0	0	Ton/Ton
CO2 Gas	1.03	0	Ton/Ton

3) Raw Material Consumption (Consumption of raw material per unit of product)

Name of Raw Materials

During the Previous current financial Year Financial year

UOM

4) Fuel Consumption Fuel Name	Consent quantity Ac	tual Quantity		иом
Anti-foaming Agent (ANP)		0.001	0.558	Ton/Ton
Anti-Caking Agent (ANP)		0.001	1.361	Ton/Ton
Torrent / Additive Agent (Multiple Grade NP based NPK fertilizer with an opetion of prod as per EC)	K Fertilizer (Diffrant grades of AN & DAP ucing frortiefied grades from the same units	0.005	4.740	Ton/Ton
Anti-foaming Agent (Multiple Grade NPK Fer NPK fertilizer with an opetion of producing f EC)	rtilizer (Diffrant grades of AN & DAP based frortiefied grades from the same units as per	0.02	0.200	Ton/Ton
	ilizer (Diffrant grades of AN & DAP based NPK efied grades from the same units as per EC)	1	0.898	Ton/Ton
Clay/Filler ((Multiple Grade NPK Fertilizer (E fertilizer with an opetion of producing frortion	Diffrant grades of AN & DAP based NPK effect grades from the same units as per EC)	0.015	0.061	Ton/Ton
Potash ((Multiple Grade NPK Fertilizer (Diffr with an opetion of producing frortiefied grad	rant grades of AN & DAP based NPK fertilizer des from the same units as per EC))	0.263	0.498	Ton/Ton
Sulphuric Acid (ANP)		0.057	0.059	Ton/Ton
Sulphuric Acid (Multiple Grade NPK Fertilize fertilizer with an opetion of producing frortic	r (Diffrant grades of AN & DAP based NPK efied grades from the same units as per EC)	0.358	0.062	Ton/Ton
Phosphoric Acid (ANP)		0.241	0.241	Ton/Ton
Phosphoric Acid (Multiple Grade NPK Fertiliz fertilizer with an opetion of producing frortic	rer (Diffrant grades of AN & DAP based NPK efied grades from the same units as per EC)	0.203	0.286	Ton/Ton
WNA (AN Melt)		0.792	0.796	Ton/Ton
WNA (AN Solid)		0.809	0.807	Ton/Ton
WNA (ANP)		0.428	0.413	Ton/Ton
	Fertilizer (Diffrant grades of AN & DAP based rortiefied grades from the same units as per	8	7.702	Ton/Ton
Natural gas (Ammonia) (SM3/MT)		1039.208	1044.895	Ton/Ton
Ammonia (AN Melt)		0.214	0.214	Ton/Ton
Ammonia (AN Solid)		0.215	0.217	Ton/Ton
Ammonia (ANP)		0.188	0.187	Ton/Ton
Ammonia (Multiple Grade NPK Fertilizer (Difwith an opetion of producing frortiefied grad	ffrant grades of AN & DAP based NPK fertilizer des from the same units as per EC))	0.216	0.13	Ton/Ton
Ammonia (Weak Nitric Acid (WNA) from WN	IA-I,II,IV)	0.297	0.299	Ton/Ton

Fuel Name	Consent quantity	Actual Quantity	UOM
Coal	177390	6662.91	MT/A
Natural Gas	26387.74	1782.34	MT/A
HSD	635	59.76	KL/A

Part-C

Pollution discharged to environment/unit of output (Parameter as specified in the consent issued) [A] Water
Pollutants Detail

Poliutants Detail	Quantity of Pollutants discharged (kL/day)	discharged(Mg/Lit) Except PH,Temp,Colour	variation from prescribed standards with reasons	
	Quantity	Concentration	%variation	Standard Reason
PH	0	7.12	0	6.5 to 8.5 NA

COD	72.12	49.2	0	250	NA
BOD	26.38	18	0	100	NA
TDS	1976.16	1348	0	2100	NA
TSS	38.70	26.4	0	100	NA
Ammonical Nitrogen as N	48.78	33.28	0	50	NA
Total Kjeldhal Nitrogen (TKN) as N	15.01	10.24	0	75	NA
Free Ammonical Nitrogen	0.41	0.28	0	4	NA
Nitrate Nitrogen as N	3.13	2.14	0	20	NA
Dissolved Phosphate as P	1.72	1.18	0	5	NA
Fluorides' as F	0	0	0	10	NA
Oil & Grease	1.94	1.33	0	10	NA

[B] Air (Stack) Pollutants Detail	Quantity of Pollutants discharged (kL/day)	Concentration of Pollutants discharged(Mg/NM3)	Percentage of variation from prescribed standards with reasons		
	Quantity	Concentration	%variation	Standard	Reason
NH3 (NPK Train-1)	23.44	7.34	0	300 mg/Nm3	NA
Fluoride (NPK Train-1)	0	0	0	10 mg/Nm3	NA
PM (NPK Train-1)	83.16	26.04	0	150 mg/Nm3	NA
NH3 (NPK Train-2)	20.51	4.56	0	300 mg/Nm3	NA
Fluoride (NPK Train-2)	0	0	0	10 mg/Nm3	NA
PM (NPK Train-2)	94.75	21.07	0	150 mg/Nm3	NA
NH3 (ANP Prilling Tower)	12.95	5.10	0	300 mg/Nm3	NA
Fluoride (ANP Prilling Tower)	0	0	0	10 mg/Nm3	NA
PM (ANP Prilling Tower)	84.76	33.44	0	150 mg/Nm3	NA
NH3 (AN Prilling Tower)	9.39	4.33	0	300 mg/Nm3	NA
PM (AN Prilling Tower)	61.61	28.4	0	150 mg/Nm3	NA
SO2 (Coal Fired Boiler)	151.43	136.1	0	3200 Kg/Day	NA
PM (Coal Fired Boiler)	21.90	19.68	0	150 mg/Nm3	NA
NO2 (WNA-1)	186.99	274.13	0	400 mg/Nm3	NA
NO2 (WNA-2)	205.04	246.4	0	400 mg/Nm3	NA
NO2 (WNA-4)	175.70	284.7	0	400 mg/Nm3	NA
NO2 (Ammonia Reformer)	54.14	26.28	0	400 mg/Nm3	NA

Part-D

HAZARDOUS WASTES 1) From Process			
Hazardous Waste Type	Total During Previous Financial year	Total During Current Financial year	ИОМ
5.1 Used or spent oil	66.60	63.39	KL/A
5.2 Wastes or residues containing oil	0	0	MT/A

2) From Pollution Control Facilities Hazardous Waste Type Total During Previous Fin	ancial Tot	al During Current Fi	nancial IIOM
35.3 Chemical sludge from waste water treatment	161	177	MT/A
33.1 Empty barrels /containers /liners contaminated with hazardous chemicals /wastes	0	0	Nos./Y
35.2 Spent ion exchange resin containing toxic metals	0	0	MT/A
17.2 Spent catalyst	1.30	0	KL/A
17.2 Spent catalyst	1.67	0	MT/A
17.2 Spent catalyst	0	5.43	MT/A
34.1 Chemical-containing residue arising from decontamination.	0	0	MT/A
17.2 Spent catalyst	0	0	MT/A
17.2 Spent catalyst	0	0	Kg/Annum
33.1 Empty barrels /containers /liners contaminated with hazardous chemicals /wastes	0	0	Nos./Y
33.1 Empty barrels /containers /liners contaminated with hazardous chemicals /wastes	0	0	MT/A

Hazardous Waste Type	Total During Previous Financial year	Total During Current Financial year	UOM
35.3 Chemical sludge from waste water treatment	161	177	MT/A

Part-E

SO	LID	WA	STE	S
1)	Fro	m P	roce	255

1) I TOTTI FTOCESS			
Non Hazardous Waste Type	Total During Previous Financial year	Total During Current Financial year	UOM
Coal Ash	6162.10	9214.12	MT/A
Insulation waste (Glass wool)	40.21	19.18	MT/A
Canteen Food Waste	710	0	Kg/Annum
Paper waste	421.5	0	Kg/Annum
Packaging waste	620	0	Kg/Annum
Spun Filter	0	0	MT/A
Ash due to Coal & Lime Treatment	0	0	MT/A

2) From Pollution Control Facilities

Non Hazardous Waste Type	Total During Previous Financial year	Total During Current Financial year	UOM
Not Application	0	0	MT/A

3) Quantity Recycled or Re-utilized within the unit

Waste Type	Total During Previous Financial year	Total During Current Financial year	UOM
35.3 Chemical sludge from waste water treatment	161	177	MT/A

Part-F

Please specify the characteristics(in terms of concentration and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

1) Hazardous Waste

5.1 Used or spent oil	63.39	KL/A	Spent Oil
17.2 Spent catalyst	5.43	MT/A	Spent Iron Oxide Catalyst
35.3 Chemical sludge from waste water treatment	177	MT/A	Chemical sludge from waste water treatment

2) Solid Waste

Type of Solid Waste Generated	Qty of Solid Waste	UOM	Concentration of Solid Waste
Not Applicable	0	MT/M	

Part-G

Impact of the pollution Control measures taken on conservation of natural resources and consequently on the cost of production.

Description	Reduction in Water Consumption (M3/day)	Reduction in Fuel & Solvent Consumption (KL/day)	Reduction in Raw Material (Kg)	Reduction in Power Consumption (KWH)	Capital Investment(in Lacs)	Reduction in Maintenance(in Lacs)
ETP treated water PH maintained by using ETP Outfall instead of RW	10	0	0	0	0.5	0
Energy saving by using auto delta star converter unit for D301 motor	0	0	0	53.7	0.02	0
EDI Installation in down stream of RO Permeate to reduce DM plant regeneration influent	200	0	0	0	11	0

Part-H

Additional measures/investment proposal for environmental protection abatement of pollution, prevention of pollution. [A] Investment made during the period of Environmental Statement

Statement		
Detail of measures for Environmental Protection	Environmental Protection Measures	Capital Investment (Lacks)
Green belt development : Plantation & Maintenance at site & nearby villages	Environmental protection	20
OCEMS ,AAQMS upgradation & Maintenance	Pollution monitoring	28
Environmental Monitoring	Pollution monitoring	26
EDI Installation in down stream of RO Permeate to reduce DM plant regeneration influent	Water conservation / Effluent reduction	11

[B] Investment Proposed for next Year Detail of measures for Environmental Protection	Environmental Protection Measures	Capital Investment (Lacks)
Green belt development : Plantation & Maintenance at site & nearby villages	Environmental protection	20
OCEMS ,AAQMS upgradation & Maintenance	Pollution monitoring	28
Reduce effluent discharge of T8/T11 of IPA by recycling to CTBD make up in IPA/ WNA3,4/Utilities	Water conservation / Effluent reduction	188
Solid Recovery Project	Water conservation / Effluent reduction	2300

Part-I

Any other particulars for improving the quality of the environment.

Particulars

1. Identification of opportunities for up-gradation of the infrastructure for air pollution control aimed at achieving the performance beyond regulatory compliance at DFPCL through Environmental Science and Engineering Department, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai. 2. Deepak fertilisers collaborative efforts yield remarkable results in forest conservation. Plantation done at Davadi Village, Dombivali (Total – 22,220 Nos. of trees are planted.) 3. World Environment Day

Name & Designation

Jeyaprakash M

UAN No:

MPCB-ENVIRONMENT_STATEMENT-0000069450

Submitted On:

11-09-2024